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On hydromagnetic Rossby waves excited by 
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The pattern and propagation of hydromagnetic Rossby waves excited by travel- 
ling forcing effects on a rotating spherical shell of incompressible, inviscid, 
perfectly conducting fluid are studied using Lighthill’s technique. The basic 
magnetic field H, is assumed to be uniform and acting in the ‘ beta-plane ’ in an 
arbitrary direction. The two situations when the forcing effects travel along 
and perpendicular to H, are considered. 

The steady forcing effects travelling in the direction of an eastward or west- 
ward €3, excite two types of wave systems. The first consists of uiiattenuated 
signals directly behind or ahead of the forcing effect. The other system consists 
of semicircular waves travelling in all directions or waves travelling in a limited 
wedge. 

When the forcing effect moves eastward, perpendicular to an H,, acting 
northward, the waves excited in the steady case are confined to certain wedges 
and trail behind with cusp-shaped wave crests. The magnetic field increases the 
semi-angle of the wedges, so that the region of disturbance is expanded. An 
oscillatory forcing effect generates various systems of waves. If the frequency of 
oscillation exceeds a certain critical frequency, excitement of waves in all direc- 
tions is possible. The situation with a westward-moving forcing effect is also dis- 
cussed. The effect of large rotation is to reduce the length of the waves. 

1. Introduction 
The study of the magnetohydrodynamics of rotating fluids is a very recent 

development in fluid mechanics and has applications in geophysics and astro- 
physics. Some of the features of MHD phenomena in rotating fluids can be under- 
stood by studying plane waves in uniformly rotating incompressible fluids. Hide 
(1966, 1969), Braginskiy (1967, 1970), Malkus (1967), Stewartson (1967) and 
Gaiis (1971)’ among others, have studied the hydromagnetic wave modes in in- 
compressible rotating fluids. 

In  this paper, we consider a rotating spherical shell of inviscid, incompressible, 
perfectly conducting fluid. We introduce an approximation similar to the one 
introduced by Rossby and Haurwitz in the study of planetary-scale tidal oscilla- 
tions in the atmosphere. This type of approximation to the true spherical surface 
metric by a flat one is called the ‘P-plane ’ approximation. A uniform magnetic 
field Ho acts in the /3-plane in a direction making an angle 0 with the eastward 
direction measured in the positive sense. Using Lighthill’s (1967) technique, we 
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analyse the pattern and propagation of Rossby waves generated by steady or 
oscillatory forcing effects moving with a uniform velocity U in the direction of 
Ho or perpendicular to it. These are the waves in systems of variable Coriolis 
parameter: the motion being purely horizontal with zero divergence. Such 
solenoidal motions can be expected to be realized in experiments with spherical 
shells of liquid like those of Fultz SS Long (1951) and Frenzen (1955). Lighthill 
(1967) applied his technique to examine Rossbywaves, excited by a moving wind- 
stress pattern in a /3-plane ocean, whose pattern corresponds to the non-magnetic 
case of the present study of hydromagnetic Rossby waves. 

In $ 3  we consider the case when the forcing effect travels in the direction of 
H,, i.e. makes the same angle 8 as H, does with the eastward direction. An east- 
ward-moving forcing effect (8 = 0 )  generates semicircular waves of wavelength 
2n[(V5- U 2 ) / U p ] * ,  where U < V', V' being the Alfvth wave speed. These 
semicircular waves travel ahead of the forcing region in an arbitrary direction. 
Further, signals are found directly ahead, and consist of the disturbance inte- 
grated in the west-east direction and subjected to a ' high-pass filter' with respect 
to its north-south wavenumber components. The disturbances found directly 
behind are subjected to the complementary 'low-pass filter' although they do 
include some high wavenumber components. If U > V, unattenuated dis- 
turbances trail directly behind the forcing region. The situation with a west- 
ward-moving forcing effect (6' = n) is discussed in detail in $3.2.  The waves gener- 
ated by a forcing effect moving in an intermediate direction (0 < 6' < 7r)are 
also identified. The case of oscillatory forcing effects is discussed in 9 3.4. As the 
frequency of oscillation increases, there is directional spread of the waves. 

In  $4 we consider the situation when the forcing effect moves eastward, 
perpendicular to an H, acting northward. The waves in the steady case are con- 
fined to a wedge whose semi-angle depends on A 2  = V%/U2,  and the point of in- 
flexion on each wavenumber curve corresponds to waves on the boundary of such 
a wedge. The waves trail behind the forcing effect and have cusp-shaped wave 
crests inside the wedge. The effect of the magnetic field is to increase the semi- 
angle of the wedge, i.e. to expand the region of disturbance. If the forcing effect 
oscillates with a frequency go, the pattern depends critically on the parameter 
N = go( Up)-a. If N exceeds 2 the waves are found all round the forcing effect. 
The wavenumber curves for a steady westward-moving forcing effect consist 
of two split branches passing through the points ( k  I, 0) in the wavenumber 
plane. The waves corresponding to the two branches become superposed and 
trail behind the forcing effect. 

In  $ 5  we consider the effect of large rotation on Rossby waves. It is found that 
the wavelength of the waves is reduced by a factor €28, where 

R, = V%/UQ*R', 

R' being the mean radius of the spherical shell and Q* = 2Q cos q50, with q50 the 
mean latitude. Finally, geophysical applications of the results are discussed 
in $6.  
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FIGURE 1. Co-ordinate system. 

2. Formulation and formal solution 
We use a local Cartesian frame whose origin is located at the mean latitude g50 

of the region under consideration, the x, y and z axes being eastward, northward 
and upward respectively (see figure 1 (a)). For the horizontal Coriolis acceleration 
we take Q sin 4, the vertical component of S2, the angular velocity of rotation, 
where 4 is the angle of latitude (see figure 1 ( b ) ) .  The Coriolis parameter 

f* = 2Qsin4 

is expressed in the form f* = fo + Py, where fo = 2 0  sin 4, and 

/3 = 2.3 x 10-13 cos 4, cm-l s-l. 

A magnetic field perpendicular to the x, y plane has no effect on the two-dimen- 
sional problem; hence, without loss of generality we restrict our attention to the 
case of a magnetic field whose lines of force are parallel to the x, y plane. So, we 
treat the case of an impressed uniform magnetic field H, = H, cos 8i + H, sin 6j 
acting in a direction 8 measured in the positive sense from the eastward direction. 
The linearized equations of motion of two-dimensional hydromagnetic flow of 
inviscid, incompressible, perfectly conducting fluid in the ,&plane can be written 
as 

- = 
at (3) 

20 
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where u, and uy are the velocity components relative to the rotating frame of 
reference, h, and h, are the magnetic field components, p is the hydrodynamic 
pressure divided by the density p and p is the magnetic permeability. We can 
show that the relative vorticity 5 = auJax- au,lay satisfies the equation 

where V& is the two-dimensional Laplace operator and V 5  = pHg[p the square of 
Alfv6n wave speed. The effect of the forcing region can be incorporated in the 
governing differential equation (6) by replacing the right-hand side by a non- 
zero forcing term 

where r = xi + yi is the position vector and U = U cos ai + U sin aj, i.e. the forcing 
effect moves with uniform velocity U in a direction making an angle a with the 
x axis (see figure 1 (a)). The differential equation admits a plane-wave solution 
of the type 

if the dispersion relation 
C = Co exp (i( - at + Zx +my)} 

S(  ao, I, m) = [( UI cos a + Um sin a + - Vl{Z cos 0 + m sin 0)2] ( 1 2  + m2) 

+,8Z[UZcosa+ Usina+a,] = 0 (8) 

is satisfied (since a = go + UZ cos a + Um sin a owing to the Doppler effect). 
Iff(r) vanishes outside a finite region, by taking Fourier transforms a formal solu- 
tion of (6) with (7) as its right-hand side may be obtained as 

F(k) exp [i{ - vo t + k . (r - Ut)'.] 
S(a,+U.k,l ,m) 

' dZdm, (9) 

where f(r) = /Iru O0 F(k) eik.I dZ dm 

and k = Zi+mj is the wavenumber vector. A method of obtaining a unique 
solutioii (satisfying a radiation condition) of integral equation (9) is explained 
in Lighthill (1960, 1967). I n  wavenumber (I, m) space, a t  each point of the curve 
&'(ao) = 0 we draw an arrow normal to the curve, choosing from the two normal 
directions the one pointing towards the curve S(v0 + 8)  = 0 with 6 small and posi- 
tive. That is, the arrow is in the direction of a increasing. The waves (if any) 
found in some particular direction stretching out from the forcing region are those 
given by a point on the wavenumber curve whose arrow is in that particular 
direction. The amplitude of the waves generated by the forcing term is asympto- 

- W  

ticallr given by 

where R = Ir-Utl means distance from the forcing region, V is the operator 
grad with respect to (I, m) space and k is the curvature of the wavenumber curve. 
A straight portion of the wavenumber curve generates waves without attenua- 
tion, the first factor in (10) being replaced by 277. I n  the case of multiply covered 
straight parts of the wavenumber curve, the method of obtaining the amplitude 
is to be modified as in $3.1. 
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FIGURE 2. Wavenumber curves for hydromagnetio Rossby waves generated by a steady 
forcing effect travelling eastward with velocity ( U ,  0). 

3. Waves excited by forcing effects travelling in the direction of Ho 
In this section we shall examine Rossby waves excited by a steady or oscilla- 

tory forcing effect moving in the direction of H,. Since the directions of U and H, 
are the same, we have c(. = 8 in the dispersion relation (8). Thus 

&(a,, 1, m)  = [{ UZ cos 8 + Um sin 8 + g 0 } 2  - V; (I cos 8 + m sin 8)2] (12 + m2) 

+/3Z(UZcos8+ Umsin8+cro] = 0. (11) 

We shall discuss the dispersion relation (1 1) for different values of 8. The three 
cases that arise for U > V,, U = V’ and U < V, are treated for each value of B in 
the following subsections. 

3.1. Steady eastward-moving forcing ejfect (0 = 0)  

For a steady forcing effect moving eastward with uniform velocity (U,O), 
relation (11) with 8 = 0 takes the form 

(12) 

(13) 

&(cr,,Z,m) = ( U 2 -  V~)Z2(Z2+m2)+/3UZ2 = 0. 

(P+m2) = pu/(v: = U2). 

Case (i). U < q,. The wavenumber curve in this case is a, circle: 

The wavenumbers corresponding to the points on this circle correspond to waves 
of uniform wavelength 27r[( V5 - U2)/U/3]a propagating in an arbitrary direction. 
The directions of the arrows are as shown in figure 2. The waves, which have 
circular wave crests, travel ahead of the forcing effect, f2ling the eastward-facing 
hemisphere ahead of it. In  addition, the curve (12) contains R straight portion, 

20-2 
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the line I = 0 taken twice. The arrows along the appropriate normal must be 
drawn on the two straight lines and the normal directions appropriate to each 
line may or may not coincide. By drawing S( U l +  &,a,  m)  = 0 for small positive 6, 
we observe that the line 1 = 0 splits into two parts. The arrows on these parts 

(14) 
point t o  the west if 

Otherwise, the arrows on one part point to the crest and on the other part they 
point to the east. In  other words, disturbances independent of x and t are possible 
ahead of the forcing region, if the transverse wavenumber Iml exceeds 

m < [up/( v; - U2)]+. 

rup/cv; - U2)14 

whereas, if Iml does not exceed [Up/(  V;  - Uz)]a, these disturbances trail behind. 
The physical explanation is that those waves with zero phase velocity whose 
wave crests are parallel to the east-west direction have group velocities 

(15) 
- /3 + (pz + 4 V;rn4)+ -p-(p"445m4)9 

2nt2 c, = , G, = 2m2 

directed to the east or west. The inequality (14) can be written as 

u-c, > 0. (16) 

When (16) js not satisfied C, exceeds U ,  so that forward influence becomes pos- 
sible; otherwise, U exceeds all group velocities, so that all the disturbances 
treil behind. The waves propagate without attenuation because the associated 
part of the wavenumber curve is a straight line. The disturbance that travels 
ahead (eastward) of the forcing region is the transverse disturbance created by 
the forcing effect modified by a 'high-pass filter' passing only wavenumbers 
above [pU/ (  V; - U2)]*.  The disturbance extending to the west is not subjected 
merely to the complementary 'low-pass filter'; it also includes some high wave- 
numbers . 

To estimate the magnitude of the above unattenuated disturbances, the method 
leading to (10) cannot be used unchanged because the integral to be estimated 
has a double-pole singularity on the doubly covered portion of the wavenumber 
curve. With S as in (1 1) and cr,, replaced by ic and 0 by zero, (9) becomes 

and the probelm is to estimate the inner integral when Ix- Utl is large. When 
B is positive but very small, the double pole at  1 = 0 splits into two simple poles at 

- it. - 2'c 
I, = - 1 -- u-C,' - u-c; 

When (14) is not satisfied these are on opposite sides of the rea.1 axis, SO that by 
Jordan's lemma there is a contribution to the inner integral from the pole at 
I = 1, when 2- Ut is positive and from I = I ,  when it is negative; but, when (14) 
is satisfied, both 1, and 1, have negative imaginary parts and so there is no con- 
tribution a t  all for (x- Ut)  > 0;  this agrees with the direction of the arrows in 
figure 2 .  
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The contribution to the inner integral of (17)  from the residue at the pole at 
1 = 1,;s 

2in[P(l,m)exp{i(x- U t ) l } ]  
[(UZ- V%)m2+ U/3](1,-Z2) 

and the contribution a t  the pole 1 = 1, can be written similarly. The difficulty in 
taking the limit as 6 + 0 disappears for the following reason. If steady forcing 
terms g,(x - Ut,  y) and g,(x - Ut,  y) are added to the right-hand sides of (1) and 
( 2 ) )  the differential equation for c becomes 

For the steady disturbance the right-hand side of (20) becomes 

The Fourier transform of (21 )  contains a factor 1 and hence vanishes at  1 = 0. 
Then, taking the limit ase+O of ( 1 9 )  and a similar expression for I, by L’Hospital’s 
rule, we find the residues to be 

with the upper sign applying in the limit for 1 = 1, and the lower sign in the limit 
for 1 = I,. Disturbances are found ahead of the forcing region only when (14) 
is not satisfied. Further, we see that the forward disturbances are merely I ,  
disturbances for which negative sign is taken in (22 ) .  We see that the amplitude 
of these 1, disturbances progressively decays as Iml - [Up/(  T/‘: - U2)]* increases. 
We find that a powerful forward disturbance is excited even when the group velo- 
city only slightly exceeds U although there is no forward disturbance at  all below 
[Upl(V: - U2)]4. The physical reason for this is explained by Lighthill (1967):  
a forcing effect of given extent can generate a forward-moving wave component 
most powerfully when its group velocity only slightly exceeds the speed of travel 
of the forcing e€fect because the time available before the wave component 
escapes from the forcing region is then the greatest. Increase of ( 2 2 )  to extremely 
large values would be restricted by dissipation by nonlinearity, or by the finite 
duration of the forcing effect. 

Case (ii). U > V,. In  this case, the wavenumber curve consists only of two 
coincident straight lines. The arrows on both the parts 1, and 1, point to the west, 
so that the waves trail behind without attenuation. 

3.2. Westward-moving forcing eflect (6’ = x) 

The dispersion relation for a westward-moving forcing effect is obtained by 
changing U to - U in ( 1 2 ) )  i.e. 

( U 2 -  V:)(l2+rn2)l2-PUZ2 = 0. ( 2 3 )  

Case ( i ) .  U > V’. Figure 3 shows that the wavenumber curve consists of a 
circle 

(12 + my = PU/(  u2 - V,”) (24) 
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FIGURE 3. Wavenumber curves for hydromagnetic Rossby waves generated by steady 
forcing effects travelling with uniform velocity U in directions making positive angles 
a = 30°, 60°, 90°, 120°, 150° and 180" (marked on each curve) with the eastward direction; 
. . ., asymptotes. 

and 1 = 0 taken twice. The waves satisfying (24), which have circular wave 
crests, trail behind the forcing region. These waves are of uniform wavelength 
2n[(U2- V$)/pU]h and travel in an arbitrary direction. By drawing the curve 
X( - UZ + 6,1, m) = 0 for small positive 6, we find that the line 1 = 0 splits into two 
parts : 

where C, and C, are given by (15). Both 1; and 16 disturbances trail behind the 
forcing region for all transverse wavenumbers. 

Case (ii). U < V'. The wavenumber curve consists only of two straight portions 
1 = 0 taken twice which split into two parts Zi and 16 given by ( 2 5 ) .  We find that 
the 1; disturbances trail behind the forcing region for all transverse wavenumbers 
whereas 1, disturbances trail behind or travel ahead of the forcing region according 
as m [Up/(  V: - U2)]*.  If U = V,, both 1; and 1; disturbances tmil behind the 
forcing effect. 

3.3 Xteady forcing eJTfect moving in an  arbitrary direction (0 < 8 < .n) 

In this case 0 takes arbitrary values such that 0 < 8 < n-. We consider a forcing 
effect moving with uniform velocity ( U  cos 6, U sin 0). The dispersion relation 
(1 1) then becomes 

( U 2  - V$)  [ I  cose+m s ina2  (1, +m2) +pUl(Z cos 6 + msin 6 )  = 0. (26) 
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Case (i). U > V,. The wavenumber curve consists of the cubic curve 

( U 2 -  V3) (Zcos8+msin8)(12+m2)+,&UZ = 0 (27) 

and a straight-line part ZcosO+rnsinO = 0. (28) 
The wavenumber curves satisfying (27) and (28) for a = 30", 60", 90", 120" 
and 150" are shown in figure 3. As is indicated by the arrows, the waves cor- 
responding to points on (27) are found in a wedge defined by the negative-1 
axis and a line which makes an angle 8 measured in the positive sense with the 
negative4 axis. If 8 is relatively small (8 < in) the disturbances propagate 
behind the forcing region. If 8 > +TT the disturbances are found behind as well 
as ahead of the forcing effect. The point of inflexion on each curve at  the origin, 
where the arrow points westward for all values of 8, means that, whenever the 
forcing term has significant wavenumber components in this region, a strong 
signal will be found to the west of the disturbance. The amplitudes of these 
disturbances attenuate like R-4 instead of R-4. In addition, we have unattenua- 
ting disturbances trailing directly behind the forcing region for all values of 8. 

Case (ii). U < V'. In  this case the dispersion relation (26) can be written as 

( V 3  - U z )  [Zcos 8 +m sin el2 (12+m2) -pUZ [Z cos 8+ msin 81 = 0. (29) 

Thus, the wavenumber curve consists of the cubic 

(7%- U 2 )  (Zcos8+msinO) (Z2+m2)--pUZ = 0 (30) 
and the straight portion (28). The cubic curve (30) for each 8 is a reflexion of the 
cubic curve shown in figure 3 for n - 8 in the m axis. The waves corresponding to 
the points satisfying (30) are found in a wedge formed by the negative-Z-axis and 
a line making an angle n - 8 measured in the negative sense with the negative4 
axis. If 8 < in the waves are travelling behind as well as ahead of the forcing 
region and if 8 > ~ T T ,  the waves are found only ahead of the forcing region. The 
unattenuated disturbances travel directly ahead of the forcing effect. The strong 
signal to the west is still found in this case if there are significant waveiiumbers 
about the origin, which is a point of inflexion on each curve. 

Case (iii). U = V'. The wavenumber curve consists of two straight portions 
given by 1 = 0 and Z cos 8 + m sin 8 = 0 for each 8. In  every case, the transverse 
disturbances trail directly behind the forcing effect and the waves corresponding 
to the points on 1 = 0 travel westward. 

3.4. Travelling oscillatory *forcing eflects 

In  this section we study the waves generated by an oscillatory forcing effect 
travelling with uniform velocity ( U  cos 8, U sin 8).  The dispersion relation is 
given by (1 1) and the wavenumber curves are drawn in figure 4 for various go 

when 8 = 30", taking the case U > V,. For 8 < in we have found in 8 3.3 that. a 
steady forcing effect generates waves in a limited wedge trailing behind it. T t  
is the purpose of this section to examine whether or not this limitation holds for 
the oscillatory case. 

First we notice that the unattenuated disturbances excited in the steady case 
are eliminated. The straight portion (28) and the cubic curve (27) are replaced 
by a curve which splits into two branches. From figure 4 we see that, if m < 0, 
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the branch passing through the origin corresponds to (28) and the branch 
away from the origin corresponds to (27). If m > 0, the reverse is true. The shape 
of #(ao) depends critically on the value of the frequency parameter 

(31) 

For L < 2 the trailing character of the waves persists, but on the other hand, 
any components with L > 2 have a much greater directional spread. There 
exists a critical value of L = L, (which is seen to lie between 3 and 4) beyond which 
large changes take place. For 1; = 5 we find that the wavenumber curve splits 
into three branches. The waves corresponding to the ring-shaped branch passing 
through the origin are found practically all around the forcing region. However, 
only waves corresponding to very small wavenumbers, say with 

[(Z2+m2){(U3- V5)/U/3}]+ < +, 
will be found all round the forcing effect. The other two branches become nearly 
straight and hence the waves corresponding to the points on them continue to 
trail behind the forcing region. 

L = 2a0 [U3/3/( u2- V5)l-k 

4. Waves excited by forcing effects moving perpendicular to H, 
In  this section, we discuss the pattern and propagation of Rossby waves pro- 

duced by a steady or oscillatory forcing effect moving in a direction perpendicular 
to H,. We have taken the forcing effect, for definiteness, to be moving eastward 
and Ho acting northward. The dispersion relation (8) becomes 

S(Cr,, I, m) = [( uz + coy - v; m2] (12 + m2) +PZ( uz + a,) = 0. (32) 

If the transformation 1' = Z (U/P)*, m' = m( U/P)* is introduced (32) becomes on 
dropping the primes 

X(cro) = [(N+Z)2-A2m2](Z2+m2)+Z(N+Z) = 0,  (33) 

where N is the frequency parameter given by N = go( Up)-& and A2 = V5/U2.  

4.1. Xteady forcing effect 

For N = 0, the dispersion relation for a steady forcing effect takes the form 

S(0) = (Z2-AA2m2)(Z2+m2)+Z2 = 0. (34) 

The wavenumber curves satisfying (34) are drawn for A2 = i, 1 and 5 in figure 5. 
The curves are symmetric about the Z and m axes and are asymptotic to the lines 
m = +Z/A. The arrows on the curve indicate that the waves trail behind the 
forcing region for all values of A2. In  contrast with the situation in 4 3, the waves 
trail behind in all three cases U > V,, U = V, and U < V,. In  other words, if U 
is fixed, the magnetic field strength has no effect on the trailing character of the 
waves. 

We can see from figure 5 that, as A2+ 0, the two branches of the wavenumber 
curve on each side of the m axis coincide with it. This wake-like disturbance 
has been pointed out by Lighthill (1967) and was noticed by Fultz & Long 
(1951) in their experiments. 



314 M .  S.  Sarma and L. V .  K .  V .  Sarma 

FIGURE 5. Wavenumber curves for hydromagnetic Rossby waves generated by a steady 
forcing effect moving with uniform velocity U in the eastward direction for A2 = 0.5, 1 
and 5 .  - -, asymptotes; 0,  points of inflexion. 

The point of inflexion ( A  cos 6,  h sin 6) on the wavenumber curve is given by 
h = Z(A2 - Z2)-8, where Z = cot 5 satisfies the equation 

( l -A2)Z6-6A224+3A2(A2-  1)Z2+2A4 = 0. ( 3 5 )  

Equation (35) is a cubic in Z2 whose positive real roots give the points of in- 
flexion. They are shown by a solid circle on the wavenumber curves for A2 = 0-5, 
1 and 5 in figure 5. The arrows on the wavenumber curves at  the points of inflexion 
make the maximum angle $ with the eastward direction measured in the positive 
sense, where 

2[2A2+22(A2- l)] 
2 4  + ~2 

tan@ = 

This implies that all the waves generated a t  the forcing effect propagate west- 
ward, confining themselves in the wedges of semi-angle +, and the decay of their 
amplitudes is given by (10). It may be noted that the waves corresponding to the 
point of inflexion attenuate like R-* instead of R-4. It is seen that [tan $1 will 
increase as A 2  is increased. This means that the wedge in which the waves are 
confined expands as the strength of the magnetic field is increased. 



Hydromagnetic Rossby waves 315 

FIGURE 6. Curves of constant phase for wavenumber curves shown in 
figure 5 for A2 = 0.5, 1 and 5. 

4.2. Curves of constant phase 
The curves of constant phase, which are polar reciprocals of S(uo) = 0, are the 
loci of points (x, y )  defined by 

2 ( N + Z ) ( Z 2 + m 2 ) + 2 { ( N + l ) 2 - A  m }  
[ ]2(Z2+m2) ( ( N  + Z) 1 - A2 - m2} - NZ1 1 (37)  

z+N+2z1 
I 

x = -M2 

x sgn [2(N + 1) ( Z 2  +m2) + 11, 

I 
2m{(N + 1)'- A2m2} - 2A2m(Z2 + m2) 

= -lV2 j2(12+m2){(N+Z)I-A2m2)-NZ~ 
x sgn [2(N + I) (Z2 +m2) +I], 

[ 
where M is the constant value of the phase k . r. For the steady case, i.e. N = 0, 
the curves of constant phase are drawn for A2 = 0.5, i and 5 in figure 6. They con- 
tain cusps corresponding to the point of inflexion on the wavenumber curve. The 
curves of constant phase in the second and third quadrants in figure 6 correspond 
to the wavenumber curves in the first and fourth quadrants (or in the third and 
second quadrants) in figure 5 respectively. This is indicated by the direction of the 
arrows on the wavenumber curves. The waves are confined to the wedges (OC,, 
OC;), etc., where OC, and OC; are the lines of cusps. The waves corresponding to 
the points of inflexion propagate along the lines of cusps and the waves corre- 
sponding to the other points of S(0 )  = 0 propagate inside the wedge. The waves of 
shorter wavelength propagate inside OC,, ON,, etc. The waves of longer wave- 
length propagate outsideON,, etc., where ON,, etc., are normals to theasymptotes 
of the wavenumber curves in the direction of the arrows. It is seen from figure 6 
that the wedges open up as A 2  is increased, which confirms the result that the 
effect of the magnetic field is to increase the angle of the wedge in which the waves 
are confined. 
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FIGURE 5 .  Wavenumber curves for hydromagnetic Rossby waves generated by an oscilla- 
tory forcing effect moving in the uniform velocity ( U ,  0).  In  Xi( j), i denotes the branch 
number and j denotes the values of N = no( U//3-%, i = 0 and j = 0 corresponding to the 
steady case, A = 0.5. 0,  points of idexion. 

4.3. An oscillatory forcing effect 

If the forcing effect is oscillatory, the dispersion relation (33) contains a non- 
zero parameter N in addition to A2, which is fixed as 0.5 in the present discussion. 
For all N the wavenumber curves are symmetric about the 1 axis and are asymp- 
totic to the lines m = -t IIA. We consider the waves generated for N > 2 ,  N = 2 
and N < 2 in turn as N = 2 is a critical value where the transition to a new 
pattern and propagation occurs. 

For N < 2 ,  we have two branches of the wavenumber curve, one passing 
through the origin and the other passing through the point ( - N ,  0). The 
wave number curves for N = 0 , 1 , 2  and 3 are shown in figure 7. The waves are 
found to fill the wedges formed by the normals at the points of inflexion, which 
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are shown as solid circles on the branches of the wavenumber curves. For N = 1 
the waves corresponding to the points on the branch S,(l) are conhed  to  the 
wedge of semi-angle 37.6" and those corresponding to the points on S,(2) fill the 
wedge of semi-angle 38.7". 

For N = 2 the wavenumber curves drawn in figure 7 consists of three branches, 
Sl(l), S2(2) and S3(2). The waves corresponding to the points on S,(2) are found 
all round the forcing region except in a wedge of semi-angle 18.4" ahead of it. The 
waves corresponding to the points on S2(2) and S3(2) are confined to  wedges of 
semi-angle 54" and 38" respectively. 

For N > 2 the wavenumber curve consists of three distinct branches S,(3), 
S2(3) and S3(3). These are drawn in figure 7 for N = 3. The branch S1(3) is an 
oval one involvingverysmall wavenumbers, say with &?+ m2) (U/P)>:  less than 1. 
If the forcing effect generates components with such small wavenumbers, the 
waves are found all round it. The waves corresponding to the branch S2(3) are 
confined to a wedge of semi-angle 66.25" and those corresponding to  the points 
on X3(3) are confined to wedge of semi-angle 26.35". All the waves generated by 
the forcing effect trail behind it and are confined to their respective wedges. The 
general pattern and propagation of the waves are not affected by the hydromag- 
netic parameter A2, which only affects the semi-angles of the wedges. 

4.4. Steady westward-moving forcing effects 

The dispersion relation for a steady westward-moving forcing effect is obtained 
by changing the sign of the second term in (34). We therefore have 

(Z2-A2m2)(Z2+m2)-Z2 = 0. (38) 

The wavenumber curves for A2 = 0.5, 1 and 5 are shown in figure 8. The curves 
split into two branches &'&(A2) passing through the points ( 5 1 , O )  respectively. 
The curves are symmetric about the Z axis and tend asymptotically to the lines 
m = k Z/A. The points of inflexion are given by (35). There are no points of in- 
flexion on the wavenumber curves for A2 > 1. The waves corresponding to the 
points on the wavenumber curves S+( 1)  and S+(5) trail behind the forcing region 
inside the wedges formed by the normals t o  the asymptotes drawn in the direction 
of the arrows. Hence, the waves corresponding to the points on S+( 1) and X+(5) 
are found inside the wedges of semi-angles 45" and 66", respectively. 

There is a point of inflexion on the wavenumber curve S+(0.5) shown by a solid 
circle in figure 8. The curves of constant phase F+(0.5) of S+(0.5) are drawn in 
figure 9. We find that F+(0.5) has a cusp corresponding to the point of inflexion. 
ON and ON' are normals to the asymptotes and OC, Oc' are the lines of cusps. 
The waves corresponding to the point of inflexion on X+(0.5) propagate along 
these lines of cusps. The waves of shorter wavelength are confined to the wedge 
(OC, OC') of semi-angle 8". The waves of longer wavelength propagate outside 
this wedge but confined to the wedge ( O N , O N ' )  of semi-angle 36". For any 
particular direction, there are three wavespropagating inside the wedge (OC, OC'). 

We notice that, as the magnetic field strength is increased, the semi-angles 
of the wedges are also increased because the inclination of the normals to  the 
corresponding asymptotes to the eastward direction is increased. As A2 + 0, 
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- 1  

i 

FIGURE 8. Wavenumber curves for hydroinagnetic Rossby waves generated by a steady 
forcing effect travellingwithuniform velocity ( - U ,  0).  S,(A2) denotes the branches passing 
through (k  1, 0 ) ;  A2 = 0.5, 1 and 5. 

the two branches S,(A2) close up to become a circle and the line 1 = 0. This case 
was discussed by Lighthill (1967). 

Finally, we consider the presence of the branch S-(A2) in figure 8.7 Even 
though there is symmetry with respect to the origin the present problem is an 
exception to the general statement that the solution which satisfies the radiation 
condition takes only one out of each pair & k (Lighthill 1960, p. 407). For it 
follows that, if the wavenumber curve for a particular frequency is a closed curve 
not enclosing singularities, the arrows will either be always outwards from the 
curve or always inwards. It is in such cases that, owing to the symmetry with 
respect to the origin, where the arrows at  k and - k will lie in opposite directions, 
the above general statement applies and hence only one of them contributes. 
However, in the present example the wavenumber curve is not closed and it 
includes a singularity, namely the one at the origin. This makes it possible for the 
frequency to increase inwards on one part of the wavenumber curve and outwards 
on another part. As a result the arrows at  k k lie in the same direction and hence 
the two waves corresponding to S, (A2)  are superposed in that direction and their 
amplitudes are given by (10). 

t Private communication from Mr G. V. Prabhakara Rao. 
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\N 
FIGURE 9. Curves of constant phase F+(O.5) for the wavenumber curve S+(0.5). 

5. Effect of large rotation 
In  the study of magnetohydrodynamic rotating fluids the key parameter is the 

defined with respect to the Alfvkn wave speed VA (Hide 1971; Gans 1971), where 
R, < 1 corresponds to strong rotation. I n  the geophysical context R, < 1 is 
important (Hide 1971). Hence, we shall proceed to examine the effects of large 
rotation on Rossby waves. We introduce a similar parameter 

Rossby number R, = vA/LQ 

R, = Vl/R'Q*U, 

where Q* = 2Q cos q50 and R' is the mean radius of the spherical shell, so that 
R, << 1 corresponds to large rotation. In  the steady case, the non-dimensional form 
of (32) is 

where I, = R'Z and m, = R'm. We find that the pattern and propagation of the 
waves corresponding to the points of the wavenumber curves represented by (34) 
and (39) are identical; but the wavelengths of the waves corresponding to the 
points on the wavenumber curve (39) are reduced by a factor Rt. Hence, large 
rotation has the effect of reducing the wavelength of Rossby waves. 

(Z2,--~rn2,)(12,+m~)~R,~Z2, = 0, (39) 

6. Concluding remarks 
Hide (1966) considered the model of a rotating spherical shell of inviscid, 

incompressible, perfectly conducting fluid in order to examine the free hydro- 
magnetic oscillations in the earth's corre. The liquid metallic core of the earth 
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occupies a very nearly spherical shell and the main geomagnetic field arises in the 
core. Transmission of magnetic energy between different parts of the core is 
mainly accomplished by the hydromagnetic waves. There are various types of 
forcing effects like the release of gravitational energy within the core. Hence, the 
present study of hydromagnetic Rossby waves is of geophysical interest. It may 
be noted that the hydromagnetic Rossby waves exhibit a tendency to propagate 
to the west of the spherical shell in most of the situations discussed in $4 3 and 4. 
This tendency indicates the transport of magnetic energy towards the west. 
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